Publications
Journals
-
(2023): Bottling Liquid‐Like Minerals for Advanced Materials Synthesis, Advanced Materials
DOI: 10.1002/adma.202300702 -
(2022): Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications, Small
DOI: 10.1002/smll.202107735 -
(2022): New Insights into the Nucleation of Magnesium Hydroxide and the Influence of Poly(Acrylic Acid) during the Early Stages of Mg(OH)2 Crystallisation, CrystEngComm
DOI: 10.1039/D2CE00896C -
(2022): Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent, Nature Communications
DOI: 10.1038/s41467-022-32615-3 -
(2022): Solvent-mediated Isotope Effects Strongly Influence the Early Stages of Calcium Carbonate Formation: Exploring D2O vs. H2O in a Combined Computational and Experimental Approach, Faraday Discussions
DOI: 10.1039/D1FD00078K -
(2022): On the Binding Mechanisms of Calcium Ions to Polycarboxylates: Effects of Molecular Weight, Side Chain, and Backbone Chemistry, Langmuir
DOI: 10.1021/acs.langmuir.2c01662 -
(2022): Understanding crystal nucleation mechanisms: where do we stand? General discussion, Faraday Discussions
DOI: 10.1039/D2FD90021A -
(2021): In Situ TEM Imaging of Solution-Phase Chemical Reactions Using 2D-Heterostructure Mixing Cells, Advanced Materials
DOI: 10.1002/adma.202100668 -
(2021): Role of Water in CaCO3 Biomineralization, Journal of the American Chemical Society
DOI: 10.1021/jacs.0c11976 -
(2021): Generality of Liquid Precursor Phases in Gas Diffusion-Based Calcium Carbonate Synthesis, CrystEngComm
DOI: 10.1039/D1CE00225B -
(2021): On the Role of Poly-Glutamic Acid in the Early Stages of Iron(III) (Oxy)(hydr)oxide Formation, Minerals
DOI: 10.3390/min11070715 -
(2021): Three Reasons Why Aspartic Acid and Glutamic Acid Sequences Have a Surprisingly Different Influence on Mineralization, The Journal of Physical Chemistry B
DOI: 10.1021/acs.jpcb.1c04467 -
(2021): Uncovering the Role of Bicarbonate in Calcium Carbonate Formation at Near‐Neutral pH, Angewandte Chemie International Edition
DOI: 10.1002/anie.202104002 -
(2021): Aufdeckung der Rolle von Hydrogencarbonat-Ionen bei der Bildung von Calciumcarbonat im nahezu neutralen pH-Bereich, Angewandte Chemie
DOI: 10.1002/ange.202104002 -
(2020): Introducing the crystalline phase of dicalcium phosphate monohydrate, Nature Communications, 11, 1546
DOI: 10.1038/s41467-020-15333-6 -
(2020): Capturing an amorphous BaSO4 intermediate precursor to barite, CrystEngComm, 22, 1310-1313
DOI: 10.1039/C9CE01555H -
(2020): Potentiometric Titration Method for the Determination of Solubility Limits and pKa Values of Weak Organic Acids in Water, Analytical Chemistry, 92, 14, 9511–9515
DOI: 10.1021/acs.analchem.0c00247 -
(2020): Stabile Calciumcarbonat‐Pränukleationscluster bestimmen die Flüssig‐flüssig‐Phasenseparation, Angew. Chem., 132, 15, 6212-6217
DOI: 10.1002/ange.201915350 -
(2020): Stable Prenucleation Calcium Carbonate Clusters Define Liquid–Liquid Phase Separation, Angew. Chem. Int. Ed., 59, 15, 6155-6159
DOI: 10.1002/anie.201915350 -
(2020): Cold densification and sintering of nanovaterite by pressing with water, Journal of the European Ceramic Society, 40, 3, 893-900
DOI: 10.1016/j.jeurceramsoc.2019.10.034 -
(2020): Nonclassical nucleation towards separation and recycling science: Iron and aluminium (Oxy)(hydr)oxides, Current Opinion in Colloid & Interface Science, 46, 114-127
DOI: 10.1016/j.cocis.2020.03.010 -
(2020): Reply to Comment: Non-classical Nucleation towards Separation and Recycling Science: Iron and Aluminium (Oxy)(hydr)oxides, Current Opinion in Colloid & Interface Science, 46, 130
DOI: 10.1016/j.cocis.2020.07.002 -
(2020): Chemical trigger toward phase separation in the aqueous Al(III) system revealed, Science Advances, 6, eaba6878
DOI: 10.1126/sciadv.aba6878 -
(2019): On Biomineralization: Enzymes Switch On Mesocrystal Assembly, ACS Central Science, 357–364 (5)
DOI: 10.1021/acscentsci.8b00853 -
(2019): Short-Range Structure of Amorphous Calcium Hydrogen Phosphate, Crystal Growth & Design, 3030-3038 (19)
DOI: 10.1021/acs.cgd.9b00274 -
(2019): Ubiquitin Designer Proteins as a New Additive Generation toward Controlling Crystallization, J. Am. Chem. Soc. 141,31,12240-12245
DOI: 10.1021/jacs.9b06473 -
(2019): Baryte cohesive layers formed on (010) gypsum surface by a pseudomorphic replacement, European Journal of Mineralogy, 289-299 (31)
DOI: 10.1127/ejm/2019/0031-2847 -
(2019): Designing solid materials from their solute state: a shift in paradigms towards a holistic approach in functional materials chemistry, Journal of the American Chemical Society, 4490 – 4504 (141)
DOI: 10.1021/jacs.8b13231 -
(2019): Liquid metastable precursors of ibuprofen as aqueous nucleation intermediates, Angewandte Chemie International Edition 58, 19103-19109
DOI: 10.1002/anie.201910986 -
(2019): Flüssige metastabile Vorstufen von Ibuprofen als Zwischenprodukt der Nukleation in wässriger Lösung, Angewandte Chemie 131, 19279-19286
DOI: 10.1002/ange.201910986 -
(2019): Pseudo-Biomineralization: Complex Mineral Structures Shaped by Microbes, ACS Biomater. Sci. Eng.
DOI: 10.1021/acsbiomaterials.9b00387 -
(2019): Non-stoichiometric hydrated magnesium-doped calcium carbonate precipitation in ethanol, Chemical Communications 55, 12944-12947
DOI: 10.1039/C9CC07087G -
(2019): Impurity-free amorphous calcium carbonate, a preferential material for pharmaceutic and medical applications, European Journal of Mineralogy, 231-236 (31)
DOI: 10.1127/ejm/2019/0031-2831 -
(2019): Nucleation of hematite: A non‐classical mechanism, Chemistry — A European Journal (2019)
DOI: 10.1002/chem.201902528 -
(2018): Stabilization of Mineral Precursors by Intrinsically Disordered Proteins, Advanced Functional Materials, 1802063 2 - 10 (28)
DOI: 10.1002/adfm.201802063 -
(2018): Editorial for Special Issue “Nucleation of Minerals: Precursors, Intermediates and Their Use in Materials Chemistry”, Minerals, 239 (8)
DOI: 10.3390/min8060239 -
(2018): How Can Additives Control the Early Stages of Mineralisation?, Minerals, 179 (8)
DOI: 10.3390/min8050179 -
(2018): Indications that Amorphous Calcium Carbonates Occur in Pathological Mineralisation—A Urinary Stone from a Guinea Pig, Minerals, 84 (8)
DOI: 10.3390/min8030084 -
(2018): On Classical and Non-Classical Views on Nucleation, American Journal of Science, 969 - 988 (318)
DOI: 10.2475/09.2018.05 -
(2018): Selective synergism created by interactive nacre framework-associated proteins possessing EGF and vWA motifs: Implications for mollusk shell formation, Biochemistry, 2657 - 2666 (57)
DOI: 10.1021/acs.biochem.8b00119 -
(2018): Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation, ACS Omega, 11823 - 11830 (3)
DOI: 10.1021/acsomega.8b01697 -
(2018): On Mechanisms for Mesocrystal Formation: Magnesium Ions and Water Environments Regulate Crystallization of Amorphous Minerals, CrystEngComm, 4395 - 4405 (20)
DOI: 10.1039/C8CE00241J -
(2017): Retrosynthesis of CaCO3 via amorphous precursor particles using gastroliths of the Red Claw lobster (Cherax quadricarinatus), Journal of Structural Biology, 46 - 56 (199)
DOI: 10.1016/j.jsb.2017.05.004 -
(2017): Modulating Nucleation by Kosmotropes and Chaotropes: Testing the Waters, Crystals, 302 (7)
DOI: 10.3390/cryst7100302 -
(2017): Crystallization caught in the act with terahertz spectroscopy: non-classical pathway for L-(+)-tartaric acid, Chemistry - A European Journal, 14128 - 14132 (23)
DOI: 10.1002/chem.201702218 -
(2017): Water Dynamics from THz Spectroscopy Reveal the Locus of a Liquid–Liquid Binodal Limit in Aqueous CaCO3 Solutions, Angewandte Chemie International Edition, 490 - (56)
DOI: 10.1002/anie.201610554 -
(2017): THz-Spektroskopie erlaubt Rückschlüsse auf die Wasserdynamik und die Lage einer flüssig-flüssig-binodalen Grenze in wässrigen CaCO3-Lösungen, Angewandte Chemie, 504 - 509 (129)
DOI: 10.1002/ange.201610554 -
(2017): Functional prioritization and hydrogel regulation phenomena created by a combinatorial pearl-associated 2-protein biomineralization model system, Biochemistry, 3607 – 3618 (56)
DOI: 10.1021/acs.biochem.7b00313 -
(2017): A model sea urchin spicule matrix protein, rSpSM50, is a hydrogelator that modifies and organizes the mineralization process, Biochemistry, 2663 - 2675 (56)
DOI: 10.1021/acs.biochem.7b00083 -
(2017): Understanding the Phase Separation Mechanism: Iron(III) (Oxyhydr)oxide Systems for the Target-Oriented Design of Materials, G.I.T. Laboratory Journal, 31 33 (21)
DOI: https://www.laboratory-journal.com/science/material-science/understanding-phase-separation-mechanism -
(2017): A CaCO3/nanocellulose-based bioinspired nacre-like material, Journal of Materials Chemistry A, 16128 - 16133 (5)
DOI: 10.1039/C6TA09524K -
(2017): Alignment of Amorphous Iron Oxide Clusters: A Non-Classical Mechanism for Magnetite Formation, Angewandte Chemie International Edition, 4042 - 4046 (56)
DOI: 10.1002/anie.201610275 -
(2017): Ausrichtung amorpher Eisenoxid-Cluster: ein nichtklassischer Mechanismus für die Magnetitbildung, Angewandte Chemie, 4100 - 4104 (129)
DOI: 10.1002/ange.201610275 -
(2017): A general strategy for colloidal stable ultrasmall amorphous mineral clusters in organic solvents, Chemical Science, 1400 - 1405 (8)
DOI: 10.1039/C6SC02333A -
(2017): Growth of Organic Crystals via Attachment and Transformation of Nanoscopic Precursors, Nature Communications, 15933 1 - 6 (8)
DOI: 10.1038/ncomms15933 -
(2016): pH-dependent schemes of calcium carbonate formation in presence of alginates, Crystal Growth & Design, 1349 – 1359 (16)
DOI: 10.1021/acs.cgd.5b01488 -
(2016): Osteopontin Stabilizes Metastable States Prior to Nucleation during Apatite Formation, Chemistry of Materials, 8550 - 8555
DOI: 10.1021/acs.chemmater.6b01088 -
(2016): The molecular mechanism of iron(III) oxide nucleation, The Journal of Physical Chemistry Letters, 3123 – 3130 (7)
DOI: 10.1021/acs.jpclett.6b01237 -
(2016): Polyaspartic acid facilitates oxolation within iron(III) oxide pre-nucleation clusters and drives the formation of organic-inorganic composites, Journal of Chemical Physics, 211917-1 - 8 (145)
DOI: 10.1063/1.4963738 -
(2016): Anisotropic nanowire growth via a self-confined amorphous template process: A reconsideration on the role of amorphous calcium carbonate, Nano Research, 1334 – 1345 (9)
DOI: 10.1007/s12274-016-1029-6 -
(2016): Wasser als Schlüssel zu amorphem Proto-Aragonit-CaCO3, Angewandte Chemie, 8249 - 8252 (128)
DOI: 10.1002/ange.201603176 -
(2016): Water as the key to proto-aragonite amorphous CaCO3, Angewandte Chemie International Edition, 8117 - 8120 (55)
DOI: 10.1002/anie.201603176 -
(2016): Entropy drives calcium carbonate ion association, ChemPhysChem, 3535 - 3541 (17)
DOI: 10.1002/cphc.201600653 -
(2016): A nacre protein forms mesoscale hydrogels that “hijack” the biomineralization process within a seawater environment, CrystEngComm, 7675 - 7679 (18)
DOI: 10.1039/C6CE01887D -
(2016): A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters, ChemComm, 7036 - 7038 (52)
DOI: 10.1039/C6CC03010F -
(2016): Ausgeprägte Nahordnung in kleinen amorphen Calciumcarbonat-Clustern (<2 nm), Angewandte Chemie, 12393 - 12397 (128)
DOI: 10.1002/ange.201604179 -
(2016): Distinct short-range order is inherent to amorphous calcium carbonate clusters smaller than 2 nm, Angewandte Chemie International Edition, 12206 - 12209 (55)
DOI: 10.1002/anie.201604179 -
(2015): High-resolution insights into the early stages of silver nucleation and growth, Faraday Discussions, 59-77 (179)
DOI: 10.1039/C4FD00269E -
(2015): Fundamentals of Nanocrystal Formation (Editorial), CrystEngComm, 6778 - 6779 (17)
DOI: 10.1039/C5CE90141C -
(2015): The role of chloride ions during the formation of akaganéite revisited, Minerals, 778 - 787 (5)
DOI: 10.3390/min5040524 -
(2015): Disordered amorphous calcium carbonate from direct precipitation, CrystEngComm, 4842-4849 (17)
DOI: 10.1039/C5CE00720H -
(2015): Synergy of Mg2+ and poly(aspartic acid) in additive-controlled calcium carbonate precipitation, CrystEngComm, 6857 - 6862 (17)
DOI: 10.1039/C5CE00452G -
(2014): Sweet on Biomineralization: Effects of Carbohydrates on the Early Stages of Calcium Carbonate Crystallization, European Journal of Mineralogy, 537 - 552 (16)
DOI: 10.1127/0935-1221/2014/0026-2379 -
(2014): Pre-Nucleation Clusters as Solute Precursors in Crystallisation, Chemical Society Reviews, 2348 - 2371 (43)
DOI: 10.1039/C3CS60451A -
(2014): New Insights into the Early Stages of Silica-Controlled Barium Carbonate Crystallisation, Nanoscale, 14939 - 14949 (6)
DOI: 10.1039/C4NR05436A -
(2014): A Straightforward Treatment of Activity in Aqueous CaCO3 Solutions and the Consequences for Nucleation Theory, Advanced Materials, 752 - 757 (26)
DOI: 10.1002/adma.201303643 -
(2013): Mg2+ Tunes the Wettability of Liquid Precursors of CaCO3: Toward Controlling Mineralization Sites in Hybrid Materials, Journal of the American Chemical Society (2013), 12512 - 12515 (135)
DOI: 10.1021/ja404979z -
(2013): Biologisch inspirierte Materialwissenschaften in Hochform — flexible Calcit-Mesokristalle, Angewandte Chemie, 8366 - 8367 (125)
DOI: 10.1002/ange.201303933 -
(2013): Bio-Inspired Materials Science at Its Best—Flexible Mesocrystals of Calcite, Angewandte Chemie International Edition, 8208 - 8209 (52)
DOI: 10.1002/anie.201303933 -
(2013): Wie bilden sich Kristalle?, Nachrichten aus der Chemie (2013), 1097 - 1100 (61)
DOI: 10.1002/nadc.201390356 -
(2013): Porous tablets of crystalline calcium carbonate via sintering of amorphous nanoparticles, CrystEngComm, 1257-1263 (15)
DOI: 10.1039/C2CE26604K -
(2013): Investigating the Early Stages of Mineral Precipitation by Potentiometric Titration and Analytical Ultracentrifugation, Methods in Enzymology (2013), 45 - 69 (532)
DOI: 10.1016/B978-0-12-416617-2.00003-5 -
(2012): A Meta-Stable Liquid Precursor Phase of Calcium Carbonate and its Interactions with Polyaspartate, Faraday Discussions (2012), 291 - 312 (159)
DOI: 10.1039/C2FD20080E -
(2012): The multiple effects of amino acids on the early stages of calcium carbonate crystallization, Zeitschrift für Kristallographie - Crystalline Materials, 744 - 757 (227)
DOI: 10.1524/zkri.2012.1569 -
(2012): Calcium Carbonate Polyamorphism and Its Role in Biomineralization: How Many Amorphous Calcium Carbonates Are There?, Angewandte Chemie International Edition, 11960 - 11970 (51)
DOI: 10.1002/anie.201203125 -
(2012): Die Polyamorphie von Calciumcarbonat und ihre Bedeutung für die Biomineralisation: Wie viele amorphe Calciumcarbonat‐Phasen gibt es?, Angewandte Chemie, 12126 - 12137
DOI: 10.1002/ange.201203125 -
(2012): Colloidal Stabilization of Calcium Carbonate Prenucleation Clusters with Silica, Advanced Functional Materials (2012), 4301 - 4311 (22)
DOI: 10.1002/adfm.201200953 -
(2012): Exploring the influence of organic species on pre- and post-nucleation calcium carbonate, Faraday Discussions (2012), 61 - 85 (159)
DOI: 10.1039/C2FD20052J -
(2011): How to control the scaling of CaCO3: A "fingerprinting technique" to classify additives, Physical Chemistry Chemical Physics, 16811 - 16820 (13)
DOI: 10.1039/C1CP21328H -
(2011): Kinetic control of particle-mediated calcium carbonate crystallization, CrystEngComm, 4641 - 4615 (13)
DOI: 10.1039/C1CE05142C -
(2011): Prenucleation Clusters and Non-classical Nucleation, Nanotoday, 564 - 584 (6)
DOI: 10.1016/j.nantod.2011.10.005 -
(2011): A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles, Nanoscale, 3356 - 3566 (3)
DOI: 10.1039/C1NR10681C -
(2011): Stable prenucleation mineral clusters are liquid-like ionic polymers, Nature Communications, 590 (2)
DOI: 10.1038/ncomms1604 -
(2011): Calcium ions as bioinspired triggers to reversibly control the coil-to-helix transition in peptide-polymer-conjugates, Soft Matter (2011), 9616 - 9619 (7)
DOI: 10.1039/C1SM05625E -
(2010): Proto-calcite and proto-vaterite in amorphous calcium carbonates, Angewandte Chemie International Edition, 8889 - 8891 (49) & Angewandte Chemie (2010), 9073 - 9075 (122)
DOI: 10.1002/anie.201003220 -
(2009): The influence of selected artificial peptides on calcium carbonate precipitation: a quantitative study, Crystal Growth & Design, 2398 - 2403 (9)
DOI: 10.1021/cg801292p -
(2009): Nachweis von Kalziumkarbonat-Clustern, LaborPraxis - Analytik und Life Sciences, 44 (33) (https://www.laborpraxis.vogel.de/nachweis-von-kalziumkarbonat-clustern-a-172633/)
-
(2009): The multiple roles of additives in CaCO3 crystallization: a quantitative case study, Advanced Materials, 435 (21)
DOI: 10.1002/adma.200801614 -
(2009): Rezensionen: Alles über Biomineralisation, Nachrichten aus der Chemie, 698 - 700
DOI: 10.1002/nadc.200965595 -
(2008): Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization, Langmuir, 12496 - 12507 (24)
DOI: 10.1021/la802231s -
(2008): Stable prenucleation calcium carbonate clusters, Science, 1819 - 1822 (322)
DOI: 10.1126/science.1164271 -
(2008): Diffusion parameters in single-crystalline Li3N as probed by Li-6 and Li-7 spin-alignment echo NMR spectroscopy in comparison with results from Li-8 beta-radiation detected NMR, Journal of Physics-Condensed Matter (2008)
DOI: 10.1088/0953-8984/20/02/022201 -
(2006): The influence of Cytochrome c on the polycondensation of silicic acid, Zeitschrift für Physikalische Chemie, 371 - 381 (220)
DOI: 10.1524/zpch.2006.220.3.371
Books
-
(2017): New Perspectives on Mineral Nucleation and Growth — From Solution Precursors to Solid Materials, Springer, New York
ISBN: 978-3-319-45667-6 (Print), 978-3-319-45669-0 (online) -
(2015): The Encyclopedia of Nanotechnology - Prenucleation Clusters
DOI: 10.1007/978-94-007-6178-0_380-2